516 research outputs found

    AADLib, A Library of Reusable AADL Models

    Get PDF
    The SAE Architecture Analysis and Design Language is now a well-established language for the description of critical embedded systems, but also cyber-physical ones. A wide range of analysis tools is already available, either as part of the OSATE tool chain, or separate ones. A key missing elements of AADL is a set of reusable building blocks to help learning AADL concepts, but also experiment already existing tool chains on validated real-life examples. In this paper, we present AADLib, a library of reusable model elements. AADLib is build on two pillars: 1/ a set of ready-to- use examples so that practitioners can learn more about the AADL language itself, but also experiment with existing tools. Each example comes with a full description of available analysis and expected results. This helps reducing the learning curve of the language. 2/ a set of reusable model elements that cover typical building blocks of critical systems: processors, networks, devices with a high level of fidelity so that the cost to start a new project is reduced. AADLib is distributed under a Free/Open Source License to further disseminate the AADL language. As such, AADLib provides a convenient way to discover AADL concepts and tool chains, and learn about its features

    CESEC Chair – Training Embedded System Architects for the Critical Systems Domain

    Get PDF
    Increasing complexity and interactions across scientific and tech- nological domains in the engineering of critical systems calls for new pedagogical approach. In this paper, we introduce the CESEC teaching chair. This chair aims at supporting new integrative ap- proach for the initial training of engineer and master curriculum to three engineering school in Toulouse: ISAE, INSA Toulouse and INP ENSEEIHT. It is supported by the EADS Corporate Foundation. In this paper, we highlight the rationale for this chair: need for sys- tem architect with strong foundations on technical domains appli- cable to the aerospace industry. We then introduce the ideal profile for this architect and the various pedagogical approaches imple- mented to reach this objective

    Expressing and enforcing user-defined constraints of AADL models

    Get PDF
    The Architecture Analysis and Design Language AADL allows one to model complete systems, but also to define specific extensions through property sets and library of models. Yet, it does not define an explicit mechanism to enforce some semantics or consistency checks to ensure property sets are correctly used. In this paper, we present REAL (Requirements and Enforcements Analysis Language) as an integrated solution to this issue. REAL is defined as an AADL annex language. It adds the possibility to express constraints as theorems based on set theory to enforce implicit semantics of property sets or AADL models. We illustrate the use of the language on case studies we developed with industrial partners

    The AADL Constraint Annex

    Get PDF
    The SAE Architecture Analysis and Design Language -- AADL has been defined with a strong focus on the careful modeling of critical real-time embedded systems. Around this formalism, several analysis tools have been defined, e.g. scheduling, safety, security or performance. The SAE AS2-C wishes to complement the AADL with a versatile language to support project-specific analysis. The Model Constraints Sublanguage Annex (or in short the Constraints Annex) provides a standard AADL sublanguage extension with three major objectives: •to allow specification of project specific AADL language subsets and enforce consistent use of the language subset over all classifiers in a package and all packages in a project •to allow specification of project specific Structural Assertions on AADL instance models of component implementations and specification of Structural Assertions on classifier types (component types, feature group types and their extensions) •to allow the specification of Behavior Assertions for feature groups, component types and component implementations, grouped as Assumptions and Guarantees. Assumptions group together Behavior Assertions describing expected behavior of the environment in which a component will operate. Guarantees group together Behavior Assertions which must be honored by all instances of the component, assuming that it is deployed into an environment that honors the Assumptions Behavior Assertions. In this presentation, we will provide an overview of this language, and report on ongoing implementation efforts to date for this language

    A MDE-based optimisation process for Real-Time systems

    Get PDF
    The design and implementation of Real-Time Embedded Systems is now heavily relying on Model-Driven Engineering (MDE) as a central place to define and then analyze or implement a system. MDE toolchains are taking a key role as to gather most of functional and not functional properties in a central framework, and then exploit this information. Such toolchain is based on both 1) a modeling notation, and 2) companion tools to transform or analyse models. In this paper, we present a MDE-based process for system optimisation based on an architectural description. We first define a generic evaluation pipeline, define a library of elementary transformations and then shows how to use it through Domain-Specific Language to evaluate and then transform models. We illustrate this process on an AADL case study modeling a Generic Avionics Platform

    Mapping AADL models to a repository of multiple schedulability analysis techniques

    Get PDF
    To fill the gap between the modeling of real-time systems and the scheduling analysis, we propose a framework that supports seamlessly the two aspects: 1) modeling a system using a methodology, in our case study, the Architecture Analysis and Design Language (AADL), and 2) helping to easily check temporal requirements (schedulability analysis, worst-case response time, sensitivity analysis, etc.). We introduce an intermediate framework called MoSaRT, which supports a rich semantic concerning temporal analysis. We show with a case study how the input model is transformed into a MoSaRT model, and how our framework is able to generate the proper models as inputs to several classic temporal analysis tools

    PRISE: An Integrated Platform for Research and Teaching of Critical Embedded Systems

    Get PDF
    In this paper, we present PRISE, an integrated workbench for Research and Teaching of critical embedded systems at ISAE, the French Institute for Space and Aeronautics Engineering. PRISE is built around state-of-the-art technologies for the engineering of space and avionics systems used in Space and Avionics domain. It aims at demonstrating key aspects of critical, real-time, embedded systems used in the transport industry, but also validating new scientific contributions for the engineering of software functions. PRISE combines embedded and simulation platforms, and modeling tools. This platform is available for both research and teaching. Being built around widely used commercial and open source software; PRISE aims at being a reference platform for our teaching and research activities at ISAE

    Validate implementation correctness using simulation: the TASTE approach

    Get PDF
    High-integrity systems operate in hostile environment and must guarantee a continuous operational state, even if unexpected events happen. In addition, these systems have stringent requirements that must be validated and correctly translated from high-level specifications down to code. All these constraints make the overall development process more time-consuming. This becomes especially complex because the number of system functions keeps increasing over the years. As a result, engineers must validate system implementation and check that its execution conforms to the specifications. To do so, a traditional approach consists in a manual instrumentation of the implementation code to trace system activity while operating. However, this might be error-prone because modifications are not automatic and still made manually. Furthermore, such modifications may have an impact on the actual behavior of the system. In this paper, we present an approach to validate a system implementation by comparing execution against simulation. In that purpose, we adapt TASTE, a set of tools that eases system development by automating each step as much as possible. In particular, TASTE automates system implementation from functional (system functions description with their properties – period, deadline, priority, etc.) and deployment(processors, buses, devices to be used) models. We tailored this tool-chain to create traces during system execution. Generated output shows activation time of each task, usage of communication ports (size of the queues, instant of events pushed/pulled, etc.) and other relevant execution metrics to be monitored. As a consequence, system engineers can check implementation correctness by comparing simulation and execution metrics

    A Model-based transformation process to validate and implement high-integrity systems

    Get PDF
    Despite numerous advances, building High-Integrity Embedded systems remains a complex task. They come with strong requirements to ensure safety, schedulability or security properties; one needs to combine multiple analysis to validate each of them. Model-Based Engineering is an accepted solution to address such complexity: analytical models are derived from an abstraction of the system to be built. Yet, ensuring that all abstractions are semantically consistent, remains an issue, e.g. when performing model checking for assessing safety, and then for schedulability using timed automata, and then when generating code. Complexity stems from the high-level view of the model compared to the low-level mechanisms used. In this paper, we present our approach based on AADL and its behavioral annex to refine iteratively an architecture description. Both application and runtime components are transformed into basic AADL constructs which have a strict counterpart in classical programming languages or patterns for verification. We detail the benefits of this process to enhance analysis and code generation. This work has been integrated to the AADL-tool support OSATE2
    corecore